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Abstract. Mathematical models for transport in layered media are important for investigating how
restricting layers affect rates of solute migration in soil profiles; they may also improve the analysis
of solute displacement experiments. This study reports an (approximate) analytical solution for
solute transport during steady-state flow in a two-layer medium requiring continuity of solute fluxes
and resident concentrations at the interface. The solutions were derived with Laplace  transformations
making use of the binomial theorem. Results based on this solution were found to be in relatively good
agreement with those obtained using numerical inversion of the Laplace transform. An expression
for the flux-averaged concentration in the second layer was also obtained. Zero- and first-order
approximations for the solute distribution in the second layer were derived for a thin first layer
representing a water film or crust on top of the medium. These thin-layer approximations did not
perform as well as the ‘binomial’ solution, except for the first-order approximation when the Peclet
number, P, of the first layer, was low (P < 5). Results of this study indicate that the ordering of
two layers will affect the predicted breakthrough curves at the outlet of the medium. The two-layer
solution was used to illustrate the effects of dispersion in the inlet or outlet reservoirs using previously
published data on apparatus-induced dispersion.
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1. Introduction

Knowledge of solute transport through composite or layered porous media is of
importance to better manage and describe the movement of chemicals in natural
and artificial media. Interest in porous media transport is increasingly motivated
by concerns over the presence of a wide variety of chemical substances and wastes
in the subsurface environment. Mathematical models are necessary to assess the
fate and movement of such chemicals.

Porous media are seldom homogeneous and the transport properties of these
media will vary spatially and sometimes also temporally. Accurate mathematical
analyses of transport in heterogeneous media are not easily carried out. However,
formulation and mathematical solution of the transport problem becomes possible
if the medium is assumed, somewhat simplistically, to be composed of a series
of homogeneous layers. In soil science, composite media have been used for
representing stratified soil profiles in which horizons parallel to the soil surface
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form layers with different transport properties (Selim et al., 1977; Jacobsen et
al., 1991). Nakayama et al. (1984) investigated the movement of radionuclides
through a medium consisting of soil and granite. Layered media are often also
created artificially to slow down or prevent chemical movement (clay liners).

Solute transport in porous media has traditionally been described with the deter-
ministic advection-dispersion equation (ADE). Taylor (1953) demonstrated that the
concept of dispersion, although physically quite different, is mathematically equiv-
alent to Fickian diffusion for sufficiently large travel times. This does not always
hold and dispersion will not follow traditional Fickian behavior near interfaces or
boundaries, the use of a macroscopically constant dispersion coefficient is formaliy
incorrect in such cases (Dagan and Bresler, 1985). Given the lack of alternative
concepts of dispersion that can be conveniently used in relatively simple transport
models, the ADE with distinct dispersion coefficients for each layer still seems
attractive for modeling transport in composite media (Parker and van Genuchten,
1985). This is particularly true if the ADE is used in a consistent manner for data
analysis or prediction purposes.

Mathematical descriptions of transport in layered media have also been em-
ployed to evaluate the appropriateness of inlet and outlet boundary conditions for
homogeneous systems. For example, the boundary conditions suggested by Danck-
werts (1953) follow from the more general conditions formulated by Wehner and
Wilhelm (1956) by ignoring dispersion in the influent and effluent reservoirs. These
assumptions can most easily be evaluated if appropriate mathematical solutions
and parameter values are available for multi-layer transport. Porous media may be
viewed as assemblies of ‘independent’ homogeneous layers. Such a concept has
been helpful for formulating interface conditions for transport during steady flow_
perpendicular to the layers. For each layer, a first- or third-type condition is used for
the upper boundary while the lower boundary condition is formulated by means of a
zero gradient at the outlet or at infinity (e.g., Shamir and Harleman, 1967; Al-Niami
and Rushton, 1979). This approach usually assumes that the influent concentration
for the second layer follows directly from the concentration predicted at the outlet
of the first layer. The concentration in any layer is now independent of the transport
properties of all downstream layers; the mathematical solution procedure is then
greatly simplified while the problem of formulating more complicated alternative
interface conditions is circumvented.

An alternative condition at the interface, first used by Wehner and Wilhelm
(1956),  requires that both the solute flux and the concentration be continuous.
Conditions of this type have been routinely used for heat flow problems involving
composite media(Carslaw  and Jaeger, 1959; Gzigik, 1980). Given the similar nature
of the ADE and the diffusion or heat flow equation, it is intuitively appealing to
formulate the interface condition for solute transport in this manner although we
realize that no ‘perfect’ boundary conditionsexist. Despite additional mathematical
complications, several authors seem to prefer the combined interface conditions
(e.g., van der Laan, 1958; Kreft, 1981b; Barry and Parker, 1987). Such conditions
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may also be appropriate for the inlet and outlet conditions of homogeneous porous
media. Unfortunately, the concentration in influent and effluent reservoirs can
typically not be accurately characterized as a function of time and/or position
except for some special cases (Novakowski, 1992b).

Analytical solutions for one-dimensional transport in composite media are
often derived with Laplace transforms (Carslaw  and Jaeger, 1959) and sometimes
with Green’s functions, adjoint solution techniques, and finite integral transforms
(Mikhailov and Gzigik, 1984). Solutions can be readily obtained for an arbitrary
number of layers if each layer is viewed as being an effectively semi-infinite medi-
um. The use of Laplace transforms becomes more complicated if the concentration
of a certain upstream layer depends on properties of its downstream layers. This
situation arises when both concentration and solute flux are required to be contin-
uous at the interfaces. The resulting mathematical problem may be simplified by
considering only two layers, or by limiting the solution to only the steady-state
case (Kreft, 1981 b). Frequently, the Laplace transform has been inverted numeri-
cally. For instance, Barry and Parker (1987) obtained flux-averaged concentrations
in this manner, while Leij et al. (1991) used this approach to predict volume-
averaged concentrations. Novakowski (1992a) similarly used numerical inversion
to predict concentrations in the porous medium as well as in the upstream and
downstream reservoirs. The two- or multi-layered transport problem can also be
conveniently analyzed by means of transfer functions or temporal moments (cf.
Kreft, 198 1 a; Barry and Parker, 1987). Transfer function in the regular time domain
(i.e., travel time distributions) could be obtained experimentally, or mathemat-
ically by using a Dirac input boundary conditions and Duhamel’s theorem. Jury and
Utermann (1992) formulated a joint probability density function for the travel time
through a two-layer soil by assuming that the travel times in the individual
layers were either perfectly correlated or independent. These authors explored
the influence of transverse variations in transport due to different paths for water
flow.

To the best of our knowledge, no explicit solutions are available for the ADE
requiring simultaneous continuity in flux and concentration at the interfaces.
The objective of this study is to derive an (approximate) solution for trans-
port in a two-layer medium during steady flow using the method of Laplace trans-
forms. The solution will be evaluated through comparisons with results obtained
by numerical inversion of the Laplace transform. Alternative approximate solu-
tions may be appropriate in some cases. An approximation for the case of a thin
first layer will be presented. Several examples of resident concentration profiles
versus position or time, and flux-averaged concentration distributions versus
time, will be presented for cases where the two-layer solution may clarify
certain theoretical and experimental aspects of solute transport in layered porous
media.



68 F. J. LEIJ AND M. TH. VAN GENUCHTEN

2. Problem Formulation

The porous medium is assumed to consist of two homogeneous layers subject to
steady water flow perpendicular to the layer interface. The transport and flow prop-
erties of both layers are macroscopically uniform in time and space, while the ADE
is assumed to describe transport in each layer. These simplifying assumptions are
made to facilitate the derivation of an analytical solution. The governing transport
equations are

O<X<L,  t>o,

ac, a%5  ac2- -
at =  D2 dx2 ~237 L<x<co, t>o, (2)

where C is the volume-averaged (resident) solute concentration, t is time, x is
distance in the direction of flow, L is the position of the interface, D is the dispersion
coefficient, u is the mean pore-water velocity, while the subscripts 1 and 2 refer
to the first and second layer, respectively. The second layer is chosen to be semi-
infinite for a convenient formulation of the outlet condition, this formulation can
also be applied to finite systems.

The partial differential equations are augmented by a zero initial condition,
a third-type inlet condition involving a step input, first- and third-type interface
conditions, and a zero gradient at infinity as follows

Cl(X, 0 )  =  C2(x, 0 )  =  0, (3)

u,C1 ac1- DI-
da:

7

z=o+
(4)

Cl Id- = C21z=Lt, (5)

e,u~Cl - &DI (6)

dC2

dX
=  0 ,

Z-00
(7)

where B denotes the volumetric water content and Co is the concentration of
the influent solution at x = 0. As previously stated, conditions (4) and (7) are
approximate because of difficulties to characterize the concentration in the influent
and effluent regions.

The third- or flux-type condition is selected on physical grounds to ensure
mass conservation whereas the first- or concentration-type condition is invoked on
intuitive grounds (Kreft, 1981b). A combined first- and third-type condition at the
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interface has been widely employed, on physical grounds, for heat conduction in
composite media with perfect thermal contact between layers. The analogy between
the governing equations for solute transport and heat conduction, and the fact that
solute diffusion is one of the processes contributing to solute dispersion justify the
use of a first-type condition at the interface. Note that Equation (6) can also be cast
in terms of a second-type condition by utilizing continuity in concentration and
water flow (i.e., Ct = C;! and 61~1 = 02~2, respectively).

The multi-layer heat conduction problem has already been solved using Laplace
transforms with respect to time (Carslaw  and Jaeger, 1959; Luikov, 1968). Unfor-
tunately, the results for heat flow cannot be applied directly to solute transport
although a similar solution procedure can be adapted, as will be done in the next
section.

3. Solution Procedure

3.1. GENERAL APPROXIMATION

The previously defined problem was solved by applying the Laplace transform
with respect to time. The transformed concentration is represented as

Ci =
J

O3  Ciexp(-St)  dt, (i = 1, 2),
0

where s is the transformation variable and the overbar denotes a transformed vari-
able. Application of Equation (8) leads to a pair of ordinary differential equations
with accompanying boundary conditions in the Laplace domain. These can be
solved using standard methods; the solution for Cr and 6’2 in the Laplace domain
are given by (cf. Leij et al., 1991):

41 cosh[Xt(z - L)] - 42 sinh[Xr(z - L)]

41(q2 + i) cosh(XlL)  + (qf + iq2) sinh(XrL)’
(9)

coC2 = -exp[atlir  + a2(kz  - 112)]
S

X
~1 exd-X2(z - L)l

ql(q2 + i) cosh(XtL)  + (4: + ia) Sinh(XlL)’

with auxiliary variables

(10)
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We were unable to obtain the solution in the real time domain through application of
the inversion theorem. The solutions are first rewritten as (cf. Carslaw and Jaeger,
1959; Brenner, 1962)

c, = co exp(e1 k,)

s (QI + $)(41  +  q2)

x (9 - q2)exp[Xi(z  - 2L)] + (41 + q2) exp(-Xtz)
1 _ (41-$)(91--42) 9

(41+!)(q,+q2)exp(-2X1~)2

c2 = 2C0 ev[adG +  a2(k2  - 1c2)]

S (9 +  5)(41 + 42)

x 9 exp[-Ad  - A2(5 - L)]

1 _  (41-$)(91-d

(ql+i)(q,+q*)exp(-2X1L)’2

According to the binomial theorem:

1-=Fwn, j?fIl<l.
l - w n=O

(12)

(13)

(14)

The denominators of the last terms on the right-hand sides of Equations (12) and
(13) can be expanded to obtain infinite series:

Cl M ?exp(atkt)
(
g (9 - q2)n+1(q,  - t,”

n=o  ( 4 1  t  42)n+*(Q1  t i)n+’

x exp{--h[2(n-t  l)L-- x]}

f 5 (Ql - q2)n(ql  - $)”
n=O (41 + q2)n(g,  + $)n+l exp[-‘1(2nl  t z)1 )

7

c2 w Ql co-exp[utKt t az(lc2 - Ii,)]

x 5 (9 - Q2)yq,  - $)”
n=O (Ql + 42)"+'(ql  + $),+l

(15)

x exp[-(2n + l)A,L - A2(2 - L)]. (16)
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Such series solutions converge rapidly for small times (Carslaw  and Jaeger, 1959;
p. 309). Only the first term of each series is considered here:

x exp[-(2Kr  - kr)Js+aT1  ,
)

(17)

_
c2 M 4ata&exp[atKt  - KtFs + a, + (IQ - IIiz)(u2 - &%I

These expressions are amenable to analytical inversion. Upon expansion and appli-
cation of the shifting and convolution theorems, the approximate concentrations in
the real time domain can be written as

exp[-(2Kt  - Ict)fi

fi exp[-(2Kt  - kr)Js7

c2 M
‘tn,a&~ t

Ja; - UT 0
exp[atlit  - a:r + az(k2 - K2) - Uz(t - r)]
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x L-l exp[-(b2  - ~~2Wl
{ (2 7 s - ai

) [a&l (ex$Fij@)
+ ata&’ ( exp( --Ii1 &)

(3 - a:)(& + al) )I
-al,&’ ( fi exp(-ICI&

(S - a:>(&+ aI> i

x LF-l,  fi exP[-(~;!  - W&l

( s - ai )I

dr
7 (20)

where ,Cl_?,  and C;’ denote the inverse Laplace transform with s ---f t - T and
s --f  7, respectively. The following final result can be obtained from entries in the
table of Laplace transforms by van Genuchten and Alves (1982):

Cl x 2alCo exp(alkl - &> tA(k~, t) +
1

-&@I, t)
1

-$--(1  + 2alkl + 4a$)G(k1,  t) + 1
ai - a:

tA(2K1 - h, t) + -&{B1(2K1  - h, t)

-[l + 2a1(2K1  - k1) + 4a:t]E1(21<1  - kl, t ) } )

+a; f[l + al(2K1 - kl) + 2aft]A(2#1  - kl, t)

+${[4ait  - 2a1(2K1  - k1) - l]B1(21r’l  - kl, t)

-[4alft - 1 + 2af(2Kl  - Icl + 2alt)2]E1(2Kl  - 1;1,  t )})

-2ala2
I

O’ expK4  - 44
CC

21C* - ICI
2(t - T) - a1 >

x A(21il - ICI, t - T) + aTE1(2IL’1  - kl, t - T)
)

x (~a(&  T) + t[l + 2a$][&(O,  T) - G(O, T)])  dT]},  (21)

c2 x
4ala2Co  t

Jai - a: 0
exp[alKl - air + a2(k2  - K2) - ai(t - T)l

x
i
;(B2(k2  - A-2,  t - 7) + E2(k2  - K2, t - 7))
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x a2( 1 + +)A(K1, T) + yQq(K,,  T)

-(5 + 2UlK1 +4a:r)E,(Kl, T)]
>

-ul(~B,(K,, T)t $(3t 2alJclt 4&)

xEl(Kl, T) - up-A(KI, 7))

x
(

A@;! - h-2,  t - T) t 3B2(k2 - I<27 t - T)-

-E2(k2  - K2, t - T)] >I dr,

where

B;(k,  t) = exp(uft - u;k) erfc (“;y,

E;(k, t) = exp(& $ u;k) erfc (ky$i).

73

(22)

(24)

(25)

The integrals appearing in these solutions were evaluated with the help of Gauss-
Chebyshev quadrature (Carnahan et al., 1969) whereas the subroutine EXF (van
Genuchten and Alves, 1982) was used to obtain the product of exponential and
complementary error functions. Note that the two-layer solutions diverge when
the properties of both layers are similar (at = ~2);  the simpler homogeneous
(one-layer) solution should then be used.

Effluent breakthrough curves are more appropriately described using flux-
averaged rather than volume-averaged concentrations (Kreft and Zuber, 1978;
van Genuchten and Parker, 1984). The well known transformation between flux-
averaged and resident concentrations is most conveniently carried out in the Laplace
domain. The solution for cp given by (10) is transformed according to

+-~~_~!!g~
2

(; + 92>@,

where  q2 is defined by (1le). This leads to the following approximate expression
for CT:

c2F M 2UlCOt Ja; - a: 0
exp[utli’r - u:r t az(k2 - I(2)
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-u;<t - T)] .Ly,
i ( exp[-(k2  - K2)Js7

s - a; )

x  L,’
[ (

((I; - q&)exp>;;;F))

+L,’
(

(c&z; - a&z)
exp( -Kr&)

(s - a:)(& + al) )I+cF_,
(

fi exp[+2 - 1{2>44

s - ai i

x Jc,’
(

a2(s - a~&> exp(-h&j

)i

dr

(S--a:)@+a1)  *
(27)

The solution in the real time domain is again obtained with a table of Laplace
transforms:

G UlCO tz- Jui-a: 0
exp[ulKi’l - afr + u2(k2  - 112)

-u;<t - T)] (B2(k2  - K2, t - T) + E2(k2 - K2, t - 7))

X
([

UT - g + a;( 1 + 2u:r) 1 A(lil,  T)

-[a: + alai(2 + alKl + 24r)]Er(Kr, 7)
>

+(a~(1 + 2a:r)A(Kr,  r) - a42 + u,Kr + 24r)Et(Kr,  7))

x (2A(k2 - K2, t - T) + u2[&(k2  - A-2, t - T)

-E2(k2  - Ir,, t - T)])]  dr. (28)

Unless specified otherwise, all concentrations in this paper are of the resident

t y  pe.

3.2. THIN TOP LAYER

Several other approximations may be developed for simplifying conditions (Carslaw
and Jaeger, 1959; Brenner, 1962). As an example, consider the solution for the con-
centration in the second layer for the case where the first layer is very thin. This
situation is encountered when the soil surface is ponded (81 = l), when some
material is placed on top of the soil surface to promote an even water and solute
application, or when a soil crust has developed in the soil surface. The hyperbolic



APPROXIMATE ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT 75

functions in Equation (10) can be expanded in power series in the usual manner, to
obtain

X
exp[alK1  + a2(h - Ii,) - X2(x - L)]

T/1(92+;) r+qq:+...[ 1
+(qf+iq2)  2a~Ii-*q,+~qf+...

[ 1

7

where X 1 L = 2at Iilql . Equation (29) is written in powers of at lit, a term similar
to the Peclet number for the first layer (Pt = ~1 LI /Dl),  as follows:

(30)

Approximate solutions can be obtained for small values of utKt by neglecting
higher order terms. If only the zero-order term in the denominator of (25) is
considered, the following solution can be readily obtained:

c;! Lz 2uzCa  exp[utKt + a~(& - XT) - ~$1

x  tA(k2  - K2, t) +
1

$f?2@2 - Ii,, q
2

-&[I  + 2U& - K2)+ ‘k&]&(k2 - 1<2, t)} . (31)

This expression is very similar to the solution for a semi-infinite homogeneous
medium with a third-type inlet condition (Lindstrom et al., 1967). We also consider
the case where, in addition to the zero-order in the denominator of (31), the term
containing at Kl is included in the analysis. The denominator can be factored
according to

2UlCOc2 % -
Ii-1

exp[ut1it  + u2(k2  - K2) - ~$1

xc-’ (

exp[-(k2  - K2)Js7

1(s - 4)(4X+  a2)(&+  b) ’
(32)
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where

b= 2 + ;(u: - a;>.
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(33)

This leads to the first-order approximation:

xE2(IC2  - K2, T)
>

{A(O, t - 7) - bEb(O,  t - T)} dr. (34)

4. Results and Discussion

4.1. TABULAR RESULTS

The correctness of the previous solutions and the applicability of the series approx-
imations were assessed through comparison with results obtained by numerically
inverting (9) and (10) with an algorithm according to De Hoog et al. (1982). Results
for the numerical inversion of the test function, consisting of exponential and com-
plementary error functions, were identical to the exact (analytical) inversion for at
least five significant digits.

Consider a medium consisting of two layers with contrasting transport proper-
ties: values for v were 25 or 40, and those for D were 20 or 40 (any consistent
set of units can be used for these parameters, e.g., cm and days). Table I compares
values for the concentration in both layers according to (21) and (22) with results of
the numerical inversion of (9) and (10) for three different parameter combinations.
Notice that the analytical concentrations are very similar to the values obtained
with the inversion algorithm for cases 1 and 2. The approximation was found to be
the least accurate when ai and a2 approached the same value, or when concentra-
tions close to the interface were evaluated. As was pointed out earlier, the binomial
approximation is most appropriate for small times when s is relatively large. Note
that large time behavior can often be inferred from the steady-state solution. We
found that inversion of an additional term in the Laplace domain solutions, i.e.,
n = 1 in (15) and (16), only slightly improved the comparison with the (exact)
results from numerical inversion.

Case 3 in Table I provides an example where the prediction may become
inaccurate. The parameter values for this case were assigned such that at (= 2.795)
and a2 (= 2.828) approached the same value. The approximate results show the
biggest discrepancies with the concentrations obtained by numerical inversion at
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TABLE I. Solute concentration in a two-layer porous medium with v = 25 or 40, D = 20 or
50, and L = 10 as predicted according to (21) and (22), C, or by numerically inverting (9) and
(10), as denoted by .L-’

X
C c-1 C c-’ C IF’ c IT

tc0.2 tz0.4 tz0.6 tz0.a

Case 1: VI = 25, DI = 50, u2 = 40, and Dz = 20 (al = 1.768 and a2 = 4.472)
0 0.884 0.884 0.963 0.963 0.986 0.987 0.995 0.995
2 0.742 0.742 0.915 0.915 0.968 0.969 0.988 0.988
4 0.561 0.561 0.841 0.841 0.940 0.940 0.977 0.977
6 0.375 0.375 0.746 0.746 0.901 0.901 0.961 0.962
8 0.222 0.222 0.644 0.645 0.857 0.858 0.944 0.945

10 0.141 0.142 0.579 0.579 0.828 0.829 0.932 0.933

10 0.142 0.142 0.579 0.579 0.828 0.829 0.932 0.933
12 0.063 0.063 0.480 0.480 0.780 0.781 0.913 0.914
14 0.021 0.021 0.372 0.372 0.722 0.722 0.888 0.889
16 0.005 0.005 0.264 0.264 0.650 0.65 1 0.857 0.858
18 0.001 0.001 0.168 0.168 0.567 0.567 0.818 0.819
20 0.000 0.000 0.094 0.094 0.473 0.473 0.769 0.770

Case 2: V, = 40, DI = 20, ~2 = 25, and D2 = 50 (al = 4.472 and a2 = 1.768)
0 0.999 0.999 1 .000 1 .ooo 1 .ooo 1.000 1 .000 1.000
2 0.988 0.988 1 .ooo 1 .000 1 .000 1.000 1.000 1.000
4 0.928 0.928 0.999 0.999 1 .000 1 .ooo 1 .000 1 .000
6 0.764 0.764 0.995 0.995 1 .000 1 .000 1 .ooo 1 .ooo
8 0.496 0.496 0.976 0.976 0.998 0.998 0.999 0.999

10 0.152 0.152 0.780 0.780 0.940 0.940 0.979 0.979

10 0.152 0.152 0.780 0.780 0.940 0.940 0.979 0.979
12 0.049 0.049 0.600 0.600 0.870 0.870 0.952 0.952
14 0.013 0.013 0.418 0.417 0.773 0.773 0.911 0.911
16 0.003 0.003 0.262 0.262 0.653 0.653 0.851 0.851
18 0.000 0.000 0.148 0.148 0.522 0.522 0.774 0.774
20 0.000 0.000 0.075 0.075 0.393 0.393 0.681 0.681

Case 3: VI = 25, Di = 20, ~2 = 40, and D2 = 50 (al = 2.795 and a2 = 2.828)
0 0.978 0.978 0.998 0.998 1 .000 1 .ooo 1 .ooo 1 .ooo
2 0.868 0.868 0.984 0.984 0.998 0.998 1 .ooo 1 .ooo
4 0.633 0.634 0.942 0.942 0.991 0.99 1 0.998 0.999
6 0.345 0.345 0.848 0.849 0.972 0.972 0.995 0.995
8 0.131 0.131 0.693 0.693 0.930 0.930 0.986 0.986

10 0.033 0.033 0.501 0.496 0.857 0.853 0.968 0.966

10 0.034 0.033 0.504 0.496 0.867 0.853 0.983 0.966
12 0.011 0.011 0.372 0.370 0.789 0.784 0.95 1 0.944
14 0.003 0.003 0.258 0.257 0.703 0.699 0.920 0.913
16 0.001 0.001 0.167 0.166 0.607 0.601 0.881 0.871
18 0.000 0.000 0.100 0.098 0.506 0.498 0.832 0.817
20 0.000 0.000 0.055 0.054 0.405 0.395 0.771 0.75 1



TABLE II. Solute concentration in the second layer as predicted for differ-
ent values of al and a2 with: (i) numerical inversion of (10). (ii) analytical
approximation (22),  (iii) small layer approximation (31), and (iv) small layer
approximation (34)

X (10) (22) (31) (34) (10) (22) (31) (34)

Case 1 w = 5, DI = 10, v2 = 2.5, D2 = l0, L = 0.5 (a,~iPl = 0.125)
t = 0.8 t = 1.6

0.5 0.554 0.583 0.658 0.559 0.703 0.716 0.816 0.705
1.0 0.502 0.530 0.599 0.507 0.667 0.681 0.776 0.669
1.5 0.450 0.477 0.540 0.455 0.630 0.645 0.734 0.632
2.0 0.399 0.425 0.482 0.405 0.592 0.608 0.692 0.594
2.5 0.351 0.374 0.426 0.356 0.554 0.571 0.649 0.556
3.0 0.305 0.326 0.373 0.310 0.516 0.533 0.606 0.518
3.5 0.263 0.281 0.323 0.267 0.478 0.495 0.563 0.48 1
4.0 0.223 0.240 0.276 0.228 0.441 0.458 0.521 0.443
4.5 0.188 0.202 0.234 0.192 0.404 0.42 1 0.479 0.407
5.0 0.156 0.168 0.196 0.160 0.369 0.385 0.438 0.372

Case2 VI = 5, DI = 10, v2 = 2.5, D2 = 10, L = 2.5 (u,K, = 0.625)

t = 0.8 t= 1.6

2.5 0.432 0.436 1.085 0.577 0.631 0.638 1.345 0.763
3.0 0.378 0.382 0.987 0.518 0.591 0.598 1.279 0.721
3.5 0.328 0.330 0.890 0.461 0.551 0.558 1.211 0.678
4 .0  0 .280  0.283 0.794 0.406 0.511 0.517 1.141 0.635
4.5 0.237 0.239 0.702 0.355 0.472 0.477 1.070 0.592
5.0 0.198 0.200 0.614 0.306 0.433 0.438 0.999 0.549

Case3 VI = 25, DI = 10, 24 = 20, D2 = 10, L = 0.5 (alIt’ = 0.625)
t =0.l t = 0.2

0.5 0.891 0.892 1.762 1.043 0.978 0.977 1.847 1.127
1.0 0.790 0.791 1.625 0.940 0.955 0.954 1.817 1.103
1.5 0.657 0.659 1.424 0.801 0.918 0.918 1.768 1.065
2.0 0.508 0.509 1.172 0.638 0.866 0.866 1.694 1.010
2.5 0.360 0.362 0.895 0.470 0.796 0.797 1.590 0.937
3.0 0.233 0.234 0.628 0.318 0.712 0.712 1.455 0.846
3.5 0.137 0.137 0.402 0.196 0.615 0.615 1.292 0.740
4.0 0.073 0.073 0.234 0.110 0.511 0.512 1.109 0.624
4.5 0.035 0.035 0.122 0.055 0.408 0.408 0.916 0.506
5.0 0.015 0.015 0.058 0.025 0.311 0.312 0.727 0.394

Case4 VI = 25, DI = 10, ~1 = 20, D2 = 10, L = 2.5 (u,K,  = 3.125)
t =0.l t = 0.2

2.5 0.450 0.452 21.47 4.740 0.869 0.876 22.50 5.34
3.0 0.298 0.300 19.80 4.179 0.792 0.798 22.14 5.19
3.5 0.179 0.180 17.35 3.478 0.697 0.702 21.54 4.97
4.0 0.096 0.097 14.28 2.702 0.591 0.595 20.64 4.67
4.5 0.047 0.047 10.90 1.944 0.480 0.483 19.37 4.28
5.0 0.020 0.020 7.65 1.283 0.373 0.375 17.73 3.81
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or near the interface when the solute reaches the second layer. Inverting a second
term for the series expression of C2 did not yield significantly different results.

Table II compares values for the concentration in the second layer predicted with
(i) numerical inversion of (l0), (ii) the binomial expansion according to (23), (iii)
the zero-order approximation for small L, and (iv) the first-order approximation
for small L. The usefulness of the approximations was again assessed by using the
numerical inversion technique as the ‘benchmark’ method. Solute profiles are given
for two values oft assuming a medium with a length typical of soil cores and using
four different parameter sets. Case 1 involves a relatively thin first layer with fairly
small values for at, ~22, and L. The first-order thin-layer approximate solution (34)
is most suitable for this case while approximation (22) performs relatively poor
because of a low Peclet number, pt. Notice that zero-order approximation (31) is
much less accurate. The same transport parameters as for case 1 were also used for
case 2, except that both layers were now of equal length. Because of the increase
in L, the short-layer approximations were found to be less accurate; conversely,
the solutions according to (22) became more reliable. Case 3 of Table II involves
a higher value for at and again a smaller L such that al Kr is the same as for
case 2. The results in Table II show that the relative errors associated-with the
first-order short-layer approximation are similar for cases 2 and 3 for both short-
layer approximations. Finally, case 4 illustrates that the thin-layer approximations
become progressively worse for larger al Ir’r .

4.2. GRAPHICAL RESULTS

Thus far little attention has been paid to the use of alternative boundary conditions.
The choice of boundary conditions, albeit a somewhat esoteric issue, deserves
careful attention when modeling transport in porous media. Figure 1 shows solute
profiles for three different types of interface conditions: (i) a first- or concentration--
type condition for layer 2 and an infinite outlet condition for layer 1 (cf. Equation
(7)), with a first-type condition at the inlet of layer 1, (ii) a third- or flux-type
condition for layer 2 and an infinite outlet condition for layer 1, with a third-type
condition at the inlet of layer 1, and (iii) a combined first- and third-type condition
as formulated by (5) and (6),  also with a third-type condition at the inlet of layer
1. The remaining conditions are defined by (3), (4),  and (7). A further discussion
of the interface conditions is given by Leij et al. (1991). Figures la and lb present
the three profiles for at = 0.79 and a2 = 3.35 at t = 0.5 and 1, respectively, while
Figures lc and Id show the solute distributions when the layers are switched.
A first-type condition at the interface overpredicts the amount of solute in both
layers whereas the third-type interface condition predicts a discontinuity in the
solute concentration at the interface. The use of conditions (6) and (7) leads to a
macroscopically continuous concentration at the interface and a mass-conservative
solution (Leij et al., 1991).
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Fig. 1. Solute profiles in a two-layer medium predicted using (i) a first-type, (ii) a third-type,
and (iii) a first- and third-type interface condition with VI = 10, DI = 40, ZQ  = 15, and
DZ = 5 at (a) t = 0.5, and(b) t = 1, and with VI = 15, DI = 5, vz = 10, and D2 = 40 at
(c) t = 0.5, and (d) t = 1.

Knowledge of the time-dependent behavior of solutes in the subsurface is of
interest for many practical problems where the concentration is observed or needs
to be predicted at fixed positions. Figure 2 shows breakthrough curves, resulting
from a solute pulse with duration 0.5, just before (z = 9) and after (z = 11)
the interface, and at the outlet of the second layer (z = 20-),  for the resident
concentration calculated with (21) and (22). Also included are results for the flux-
averaged concentration at the outlet of the second layer (z = 20+) calculated with
(28). The same parameters are used as for the example shown in Figure 1. Figure 2
may be used to examine how the ordering of the two layers affects a breakthrough
curve. As expected, the curves at 2 = 9 and 11 are different when the layers are
switched. However, notice that the curves in Figures 2c and 2d are also different at
z = 20 after the solute has traversed an equal distance in both layers. In contrast,
for a medium consisting of two ‘semi-infinite’ layers it can be shown explicitly that
the order of the semi-infinite layers does not affect the outlet concentration (Shamir
and Harleman, 1967; Leij et al., 1991). This last finding for the mathematically
semi-infinite first layer is a result of the assumption that properties of layer 2 will
not influence the concentration of layer 1.
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Fig. 2. Breakthrough curves for a pulse application of solute with duration to = 0.5 to a
two-layer medium with properties VI = 10, DI = 40, ~2 = 15, and D2 = 5 (solid line) or
VI = 15, D1 = 5, ~2 = 10, and D2 = 40 (dashed line): (a) C?(t) at z = 9, (b) C:(t) at
z = 11, (c) C2R(t)  at 1: = 20-, and (6) CT(t)  at z = 20t.

Two-layer solutions may also be useful for analyzing the effect of dispersion
in the influent or effluent zones of homogeneous porous media typically used in
column displacement experiments. The ‘one-layer’ analytical solutions normally
used for describing the experimentally determined breakthrough curve will yield
effective transport parameters that are blurred by transport phenomena outside the
porous medium. James and Rubin (1972) investigated apparatus-induced dispersion
by independently determining v and D for the porous medium and the outlet
reservoir of a column displacement apparatus using the two-layer solution by
Shamir and Harleman (1967). The parameters reported by James and Rubin for
their experiment A, will be used here to predict flux-averaged concentrations with
the two-layer model according to Equation (28). This solution is compared with
the traditional one-layer ADE solution (case Al by van Genuchten and Alves,
1982) for transport in the soil followed by advection only in the effluent reservoir.
Figure 3 shows the calculated breakthrough curves obtained with the following
transport parameters: VI = 7.55 cm/d and DI = 0.864 cm2/d for the 8.9 cm long
soil and ~2 = 2.56 cm/d and II2 = 0.527 for a bottom compartment of thickness
0.24 cm. The breakthrough curve was calculated at z = 9.14 cm. Notice that the
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Fig. 3. Breakthroughcurves, CF(2), at the bottom of adisplacementapparatus (z = 9.14cm)
predicted with and without dispersion in the effluent reservoir assuming VI = 7.55 cm/d,
DI = 0.846 cm*/d,  vz = 2.56 cm/d, and, optionally, D2 = 0.527 cm2/d [James and Rubin,
1972].

predicted breakthrough curve will be too steep if effluent dispersion is present
but ignored. The results could become even worse if the effluent reservoir, with
additional advective transport, is also neglected.

Similar considerations pertain to dispersion in an influent reservoir. Figure 4
shows an example for such a situation. The resident concentration profiles shown
for t = 0.5 and 1 were calculated with the two-layer solution according to (21)
and (22) and the traditional one layer solution for advective-dispersive transport in
the second layer (case A2 by van Genuchten and Alves, 1982) assuming advective
transport in the influent compartment from x = 0-0.24. A somewhat faster and
steeper breakthrough is predicted when influent dispersion is neglected.
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Fig. 4. Solute concentration profiles, C”(z), predicted with and without dispersion in the
influent reservoir, assuming VI = 2.56 cm/d, D1 = 0.527 cm’/d (optional), “2 = 7.55 cm/d,
and D2 = 0.846 cm’/d at (a) t = 0.5 d and (b) t = 1 d.

5. Summary and Conclusions

An (approximate) analytical solution was derived for the ADE describing solute
transport during steady one-dimensional flow in a porous medium made up of
two homogeneous layers whose interface was perpendicular to the flow direction.
The solution was obtained with Laplace transforms and the binomial theorem.
The conditions at the interface presume that both the solute concentration and
the solute flux are continuous. Similar analytical solutions have previously been
useful for the early time description of heat conduction or the transport of solutes
in homogeneous finite media. Calculated resident concentrations predicted with
the newly developed analytical solution, compared favorably with those obtained
through numerical inversion of the Laplace transform, except for small values of
the Peclet number or in cases where v~D~/vZD~  is close to unity. Expressions for
the flux-averaged concentration for the second layer were also developed.

Alternative approximate solutions for the concentration in the second layer were
derived by using zero- and first-order expansions of the Peclet number for the first
layer. The first-order approximation may complement the solution for cases with
a thin first layer and a low Pt ; the zero-order approximation was shown to be
inaccurate.

Several examples of transport in two-layer media were presented. The solutions
predict continuous concentrations across the interface and conserve mass with-
in the transport system. In contrast, two previously used approaches that use a
mathematically semi-infinite first layer and invoke either a first- or third-type inlet
condition for both layers lead to mass balance errors or a discontinuous concen-
tration at the interface, respectively. The interface conditions for which the current
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tration at the interface, respectively. The interface conditions for which the current
solutions were derived imply that the ordering of the layers will affect the break-
through curve at the outlet of the medium. The utility of the two-layer solution for
analyzing transport in the influent or effluent regions of laboratory columns was
illustrated using experimental data pertaining to apparatus-induced dispersion.
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